Apple mouse
J00¢

Photo
Lourtesy of Apple

When you were interacting considerably with the screen, you
needed some sort of device to select objects on the screen, to

tell the computer that you wanted to do something with them.

Douglas C. Engelbart, 2003, referring to 1964

Why a Mouse?

WHO WOULD CHOOSE tO point, steer, and draw with a blob of
plastic as big and clumsy as a bar of soap? We spent all those years
learning to write and draw with pencils, pens, and brushes.
Sharpen the pencil to a fine point and you can create an image
with the most delicate shapes and write in the tiniest letters; it’s
not so easy to do that with a mouse.

Doug Engelbart’ tells the story of how he invented the
mouse. When he was a student, he was measuring the area under
some complex-shaped curves, using a device with wheels that
would roll in one direction and slide sideways in the axis at ninety
degrees. He was bored at a conference, and wrote in his notebook
about putting two wheels at right angles to track movement on a
plane. Years later, when he was searching for a device to select
objects on a computer screen, he remembered those notes, and
together with Bill English, he built the first mouse. We use the
mouse not just because Doug Engelbart invented it, but because

it turned out to be the pointing device that pcrﬂ)rmcd best for

The Mouse and tt

e Desktop |

17

implicity examples

Table Chart

—

Back

5

Inspector Colors

<

August

11

Fonts

PTTITITSIIT

TyrrTTyerre

% UEEOTUEE

mu.-mnp_«u«-«m«".‘

Sl Uagpien
st (Ll AN)

4

)

< (Charged)

Apple Mac OSX
fesktop with

Author

of Apple

screen

pointing and clicking on a display, outperforming light pens,
cursor keys, joysticks, trackballs, and everything else that was tried
in early tests with users. The mouse won because it was the easiest
to use.

We understand the reasons for the trinmph of the mouse
much more clearly from the story of developing the early designs
told by Stu (2 who joined Xerox Palo Alto Research Center
(PARC) in 1974 and has spent much of his time there perfecting
scientific methods to integrate with creative design. He has
developed a process to predict the behavior of a proposed design,
using task analysis, approximation, and calculation. His idea 1s to
accelerate the movement through the design space by a
partnership between designers and scientists, by providing a
science that supports design. He tells the story of applying this

science to the development of the mouse.

Why a Desktop?

[T SEEMS SURPRISING to find a “desktop” on the spherical surface
of a glowing glass display, housed in a bulky plastic box that in
itself takes up half your desk. Or is it on the cramped flat screen
of your laptop? Who came up with that idea? What were they
thinking about, and why did they choose to design a desktop
rather than a floor, or a playing field, or a meadow, or a river? Why
does this desktop have windows in it? You usually think of
windows being on the wall, not all over the surface of your desk.
Why does it have a trashcan on it? It would seem more natural to
put the trashcan on the floor.

[n 1974 Tim Mott” was an outsider at Xerox PARC, working
for a Xerox subsidiary on the design of a publishing system. He
describes how the idea of a desktop came to him as part of an
“office schematic” that would allow people to manipulate entire
documents, grabbing them with a mouse and moving them
around a representation of an office on the screen. They could
drop them into a file cabinet or trashcan, or onto a printer. One
of the objects in the office was a desktop, with a calendar and

clock on it, plus in- and out-baskets for electronic mail.

20

'y

There were lots of other people at Xerox PARC at that time
thinking about desktops and other metaphors for use in the
design of graphical user interfaces (GUIs), but Tim was working
most closely with Larry Tesler,* and the two of them worked out
processes for understanding users by talking to them, using guided
fantasies, participatory design, and usability testing. Larry
describes how he developed these processes and how icons
arrived on the desktop. Larry insisted on simplicity and designed
interactions that were easy to learn as well as easy to use. He went
on to Apple and formed another partnership in the development
of the desktop, working with Bill Atkinson® to create the designs
for Lisa, including the pull-down menus, dialog boxes, and the
one-button mouse. These ideas stayed in place as the user’s
conceptual model for the Macintosh and all of the GUIs that
followed, stretching the desktop metaphor almost beyond the

breaking point.
O

NLS, Alto, and Star

WHEN DouG ENGELBART invented the mouse, he arrived at the
dominant design for input devices in a single leap from the light
pen, and the development of the mouse since has been more in
the nature of evolution than revolution.® Engelbart also invented
the point-and-click text editor for the NLS system (oNLine
System) that he developed at the Stanford Research Institute
(SRI), and that system migrated with members of his design team
to the fledgling Xerox PARC and became the foundation of the
Alto, the first computer with a GUI. In the versions of NLS that
were built at PARC for the Alto, the text-editing demonstrations
were impressively fast, with a clattering of keystrokes that sounded
businesslike and productive. Direct manipulation made it so easy
to pick things up and move them that people would often find an
instance of a word they wanted in the text and move it into place,
instead of typing it. For programmers, this was a wonderful

interaction, but the patience needed to acquire the skills proved a

bital barrier for novice consumers when computers became

ible to ordinary people. It took the influence of Larry Tesler
il Tim Mott to create a text editor and page layout design

i that was really easy to use, and this was based on rigorous

(esting and rapid iterative prototyping. They came close to
the desktop metaphor that survives today.
f the major innovations of the Alto was the bitmap

LIne o

» oraphic : » any dot
Waplay, making it easy to show graphics. You could make any d

i r image, whether a fon
b black or white, allowing you to put any image, W hether a font

ture. onto the whole screen. The memory to do that for a

il puge display was exorbitantly expensive at the time, but it

Weant that you could translate the tradition of graphic and

i > C .r. Earlier computers had
raphic design to the computer. Earlier compute

and pixelated type fonts, but the bitmap display meant

: | AL
Primive
Wit what was on the display of the computer could look \‘\"1([|_\"
ke o book, except that it was only 72 pixels per inch instead of
Bt three times as high a resolution for the printed page. A

ite backeround and dark text was used on the screen, so that
the displ .\.:.l image was like the printed result, and the screen size

.
poncept of WYSIWYG (What You See Is What You Get).

el L YR (R o
I'he idea of the desktop was floating around Xerox PARC as

hosen to be exactly the same as a page of text, enabling the

purt of the communal consciousness. David Canfield Smith All‘.ld
devised an office metaphor as part of his PhD thc\'i\,”I’ygnmhm_x:
A\ (reative Programming Environment,” published in 1975. His
Wons looked like mathematical symbols and boxes that you could
fype into but defined the characteristics of the icons that have

hecome commonplace. Here is his explanation:

(he entities with which one programs in Pygmalion are what I call
\cons.” An icon is a graphic entity that has meaning both as a visual
image and as a machine object. Icons control the executionhof :
computer programs, because they have code and data assouateq with
them, as well as their images on the screen. This distinguishes icons
from, say, lines and rectangles in a drawing program, which have 119
uch semantics. Pygmalion is the origin of the concept of icons as it
now appears in graphical user interfaces on personal computers. After
completing my thesis, I joined Xerox's “Star” computer project. The

first thing I did was recast the programmer-oriented icons of
Pygmalion into office-oriented ones representing documents, folders,
file cabinets, mailboxes, telephones, wastebaskets, etc. These icons
have both data (e.g., document icons contain text) and behavior
(e.g., when a document icon is dropped on a folder icon, the folder
stores the document in the file system). This idea has subsequently
been adopted by the entire personal computer and workstation
industry.

When Dave Smith had finished his PhD, he was hired to join
PARC to work on the Star system. Alan Kay had always talked
about the desktop metaphor and he came up with the idea of
overlapping windows, from a metaphor of papers on a desktop.
“You can have a lot more papers on a desk if they overlap each
other, and you can see the corner of one. pull it out and put it on
top.”

Detailed accounts have been written® about how long it took
to convince a copier company to commercialize the Alto, but
Xerox did make a major effort to develop and market an “Office
of the Future” machine. They did a thorough analysis of the
business potential to find what the requirements of that machine
should be, concluding that people would pay a lot for the Alto
technology. Star was conceived in response to this; based on the
combination of Smalltalk and Alto, it became a design that fit all
of the requirements. Star was a very futuristic machine: when they
were asked in the market research surveys, people responded that
they would not give up that advanced interactive performance for
a much inferior but less expensive machine. After it was launched.
the IBM PC came out, and the people who said in the research
that they would pay a lot for Star proved to be only willing to pay

much less for an inferior interface.

24

Dr. Douglas C. Engelbart

loyiny ojoyd

Doug Engelbart is best known as the inventor of the mouse. At the time of
writing, in 2004, at the age of seventy-eight, he is still going to work at
his “Bootstrap Alliance,” trying to persuade us of the value of his ideas
about augmenting the human intellect, and evangelizing the virtues of his
“Augment System.” His office is located in the headquarters building of
Logitech, the world's largest manufacturer of mice. Taking credit as the
inventor of such an ubiquitous product is not enough for Doug; in fact, he
is charmingly modest about that achievement, preferring to discuss other
ideas that have not met with such spectacular success. He has always
wanted to create designs that enhance human performance and is not
interested in ease of use for the novice. He grew up in Oregon, and his
electrical engineering studies were interrupted by service in World War II.
During his stint in the Philippines as a naval radar technician, he came
across an article by Vannevar Bush in the Atlantic Monthly’ and was
inspired to think of a career dedicated to connecting people to knowledge.
This idealistic ambition led him to the Ames Laboratory (later NASA Ames
Research Center) on the edge of the San Francisco Bay, where he worked
on wind tunnel research, and then to the Stanford Research Institute,
where he invented the mouse and built up the Augmentation Research
Center (ARC) with funding from ARPA. In the early seventies he took
several members of his team to Xerox PARC, where he helped put the

mouse and the desktop together.

25

Doug Engelbart

Inventing the Mouse

IN 1995 THE International World Wide Web Conference
committee presented the first SoftQuad Web Award to Dr.
Douglas C. Engelbart, to commemorate a lifetime of imagination
and achievement and to acknowledge his formative influence on
the development of graphical computing, in particular for his
invention of the mouse. This is the contribution for which Doug
is universally acclaimed. In spite of this, he himself is inclined to

give credit to the trackball:

When I was a senior in electrical engineering, some of the
experiments we had to do in the laboratory would end up resulting in
funny shaped curves that curled back on themselves, and it was the
area under the curve that we were experimenting with. They had an
elbow shaped device there, a platform sort of thing that would set
down on the table. You would run the pointer around that area, and
there was a small wheel next to the pointer, resting on the tabletop,
and the other side of the joint there was another one. I couldn’t
figure out how that would produce the area under the curve.

“I'm not sure myself about the mathematics,” said the professor,
“but it is a fact that the little wheels will only roll in the axis of the
rolling direction, and will slide sideways.”

Graficon experimental pointing
device

I began to understand that the wheel would roll only as far as
you went in the one direction, irrespective of how many sideways
movements you made.

I thought of that again one time during a conference on
computer graphics, when I was feeling rebellious and bored, so I
wrote in my notes about putting two wheels at right angles to each
other, so that one would always be measuring how far you went north
and south, and the other east and west. It would be easy to convert
that into potentiometers and things so that the computer could pick
up that signal. It was a very simple idea. At the time I was unaware
that that same thing was sitting underneath the tracking ball, and
that was how a tracking ball worked. Later on the manufacturers put
the wheels against the table, which is exactly like an upside down
tracking ball. There should be credit given to the tracking ball, except
for my ignorance about it at the time.

[t says a great deal about Engelbart’s extraordinary modesty
that he makes so light of his achievement. It also says a lot about
his methodical persistence that he used his moments of boredom
at that conference to fill a notebook with ideas and that he
remembered what was in that notebook when he was looking for

the best input device solutions many years later:

When you were interacting considerably with the screen, you needed
some sort of device to select objects on the screen, to tell the
computer that you wanted to do something with them. We got some
funding in the early sixties, I think it was from NASA, and set up an
experimental environment with several different kinds of devices; a
tracking ball, a light pen, and things of that sort that were available
at the time.

As we were setting up the experiments, I happened to remember
some notes that I had made in a pocket notebook some years before,
and sketched that out to Bill English, who was the engineer setting
up the experiments, and he put one together, with the help of a few
draftsmen and machinists. That one was put in the experiments, and
happened to be winning all the tests. That became the pointing
device for our user interface. Somebody, I cant remember who,
attached the name “mouse” to it. You can picture why, because it was
an object about this big, and had one button to use for selection,
and had a wire running out the back.

[t looks like a one-eared mouse!” someone said. Soon all of us
{ust started calling it a mouse.

Ihinking of the possible relevance of those orthogonal

heels was the first step; working with Bill English to design an
uhiect to contain them was the second. The recognition that this
s might be important for interaction came from the tests that
uipared the mouse with other possible input devices; it was the

)

uple who used it in the tests who proved the point. The

¢ry came up with as many alternatives as they could that

med plausible, built prototypes and created tasks in the relevant

uitext, and then ran the tests. Here’s what Doug says about the

|

"l<

Hh "I|nl"-\:

listened to everybody who had strong ideas, and it seem to us
orth just testing everything that was available. The light pen had

heon used by radar operators for years and years, and that seemed to
nost people would be the most natural way to do it. I couldn’t see
that, but why argue with them; why not just test and measure? The
time it takes to grope for it and lift it up to the screen seemed

pusively large, so it didn't do well in the tests.

for the test we had naive users coming in, and we explained

sverything that would happen so that they weren't surprised. We
iuked them to put their hands on the keyboard, and all of sudden an
irtay of three-by-three objects would appear at an arbitrary place on

the screen, sometimes small objects and sometimes large, and they
had to hit a space bar, access the pointing device and go click on it.
[l computer measured time, overshoot, and any other characteristics
¢ thought were valuable. The assessment just showed the mouse
toming out ahead. It was many years later that I heard from Stuart
Lard, a friend at Xerox PARC, what the human factors explanation

!
[here 1s an objectivity in this process of letting the user

Ile, the value of which is a recurring theme in this story of

uning the desktop and the mouse. Come up with an idea,

Bl o prototype, and try it on the intended users. That has

pioved, time and time again, to be the best way to create

Whovative solutions.

First mouse in hand, 1963
First mou
First production mou

The Demo that Changed the World

THERE 1S A GENTLE modesty, even diffidence, in the way Doug

Engelbart talks, but he holds your attention much more firmly

than you would expect from his manner of speech. His passion for

philosophy and ideas shines through, with an underlying intensity,
almost fanaticism, that is charismatic. He remembers his early

motivations:

My initial framework for thinking about these questions got
established in 1951. I had realized that I didn’t have any great goals
for my career. I was an electrical engineer with an interesting job,
recently engaged to be married, but had no picture of the future, and
I was embarrassed about this.

“What would be an appropriate career goal for me?” I asked.

“Why don't I design a career that can maximize its benefit to
mankind?” I ended up saying.

I was an idealistic country boy. Eventually I realized that the
world is getting more complex at an ever more rapid rate, that
complex problems have to be dealt with collectively, and that our
collective ability for dealing with them is not improving nearly as fast
as the complexity is increasing. The best thing I could think of doing
was to try and help boost mankind's capability for dealing with
complex problems.

By this time he had been working for a couple of years at the
Ames Laboratory, in what is now the heart of Silicon Valley but
was then still a pleasant agricultural countryside full of orchards.
His job researching aerodynamics and wind tunnel testing was
interesting and enjoyable, he was engaged to the girl of his
dreams, and life might have been good enough; then that idealistic
itch to change the world took over, and he started his lifelong
search to develop electronic systems that would augment the
human intellect. He remembered the “Memex” that Vannevar

Bush had described as an “enlarged intimate supplement to a
person’s memory” that can be consulted with “exceeding speed
and flexibility”” He felt a kinship for the vision and optimism that
Bush communicated and set out to find his own way of realizing

an equivalent ambition.

When | w

yas half way through college, I was drafted for World War II,
il had the good fortune to get accepted in a training program that
the navy was running for electronic technicians, because the advent
il tadar and sonar had changed the aspects of navy problems
Imensely. They had a year-long program which taught me a lot of
practical things about electronics and exposed me to the fact that

the electronics of radar could put interesting things on the screen, so
| Just knew that if a computer could punch cards or send information
{0 o printer, then electronics could put anything you want on the
tieen, If a radar set could respond to operators pushing buttons or
tnking cranks, certainly the computer could! There was no question
i my mind that the engineering for that would be feasible, so you
ould Interact with a computer and see things on a screen. That

intuitive certainty made me change my career path totally to go after

it but I had an extremely difficult time conveying that conviction to

myhody else successfully for sixteen years or more.

Iy first step in that sixteen-year path of dogged
deterination was to leave his job and go to the graduate school

i the University of California at Berkeley, where one of the

piliest computers was being constructed. His fixed idea that
peaple should be able to interact with computers directly did not
HEwith the prevailing view, so he started to get a reputation as an
Sientric, Once he had his PhD, he started to look around for a
phice that would be more accepting of his vision than the UC
Hoirkel community. He talked to Bill Hewlett and David
Pk ard, but although they were enthusiastic about his ideas, they
vie determined to focus on laboratory instruments rather than
|~<||\|'II|‘ |
e finally landed a job at SRI, whose leaders were interested
W 1scarching possible uses for computers in both military and
vlian applications. He started there at the end of 1957, soon
el Sputnik had been launched, and the space race was getting
Whler way. After learning the ropes at SRI for a year and a half,

W started to lobby for the opportunity to start his own lab to

Pperiment with new ways of creating and sharing knowledge by
sobining man and machine. His wish was granted when the
LIS Air Force Office of Scientific Research provided a small

phant, and he settled down to the task of articulating his views.

“I wrote a paper that was published in 1962 called
‘Augmenting the Human Intellect: A Conceptual Framework’°
that steered my life from that point forward.” In his paper he
defined four areas in which human capabilities could be

augmented:

1. Artifacts—physical objects designed to provide for human comfort,
the manipulation of things or materials, and the manipulation of
symbols.

2. Language—the way in which the individual classifies the picture
of his world into the concepts that his mind uses to model that
world, and the symbols that he attaches to those concepts and uses
in consciously manipulating the concepts (“thinking”).

3. Methodology—the methods, procedures, and strategies with which
an individual organizes his goal-centered (problem-solving) activity.

4. Training—the conditioning needed by the individual to bring his
skills in using augmentation means 1, 2, and 3 to the point where
they are operationally effective.

The system we wish to improve can thus be visualized as
comprising a trained human being, together with his artifacts,
language, and methodology. The explicit new system we contemplate
will involve as artifacts computers and computer-controlled
information storage, information handling, and information display
devices. The aspects of the conceptual framework that are discussed
here are primarily those relating to the individual’s ability to make
significant use of such equipment in an integrated system.

[n this short quote one can see the seeds of triumph and
tragedy. The triumph is Doug’s powerful vision of a complete
system, where people and computers are engaged in a symbiotic
relationship for human benefit, working cohesively as an
integrated system. From this came the mouse and the other
elements of interactive computing that he pioneered. The tragedy
is that training is a necessary component of the system. He
developed concepts for experts, and the pursuit of the highest
capability drove the design criteria; it was therefore inevitable that

training would be needed to reach the level of proficiency that

s

uld et people benefit from this capability. That proved a

Bl to acceptance by ordinary people, and as computers
Becne less expensive and more accessible, the barrier got in the
W more and more.
il we are getting ahead of ourselves in the story. Lets go
Bk 1o 1964 when, to the surprise of the SRI management,

e Defense Advanced Research Projects Agency (DARPA)
e to fund the Augmentation Research Center (ARC) to the

fie ol halt a million dollars a year, as well as providing a new
e sharing computer system, worth another million. Engelbart’s
Hetpetie lobbying for funding and his flow of papers describing
the high-level potential of automation had not been ignored by
diyone, so now he had the resources he needed to move from

thenny to practice. He put together a stellar team of engineers for
Bl hardware and software and set about developing NLS. Bill
Blplish was a partner for Doug in much of the work they did,
uding the hardware development as the team grew to seventeen
peuple, He joined ARC in 1964 and was the perfect
uiiplementary talent, having the technical ability to implement
Wiy of the ideas that were expressed by his boss as high-level
Bl tions. After four years of development, Doug took a chance
i show the computer science community what he had been
o

for the Fall Joint Computer Conference in 1968, I stuck my neck out

ind proposed giving a real-time demonstration, if they would give me

| whole hour-and-a-half conference session. We had a timesharing

tomputer supporting our laboratory, and small five-inch diagonal
(ieens that were high resolution, but worked by moving the beam
itound (vector graphics). We put a TV camera in front of the screen
i used a TV display for a larger size image. We rented microwave
ks (from the Menlo Park civic auditorium) up to San Francisco, and
borrowed an enormous video projector, three feet by two feet by six
feel, to project onto a twenty-foot screen for the audience to see,
sing a very novel way of converting the video sweep into modulated
(gt

Bill English, the genius engineer that I worked with (on the
mouse also) managed to make all this work. He built a backstage
Mixing booth, where he could select from four video feeds, one from

Bill Englis

each of the linked displays, one looking at me, and one overhead
showing my hands working. He could select from the feeds so you
could see a composite image in real time. He had experience doing
the stage work for amateur plays, so he was the director. I had
written a script for different people to come onto the stage, so he
put a speaker in my ear to let me hear his cues: sometimes it was so
distracting that I would fumble words.

We were able to show high-resolution links, graphics for
schematic diagrams of what was going on, the faces of members of
our team in the Menlo Park Laboratory, as well as the screens that
they were looking at. We had cursors controlled by two people
simultaneously interacting on the screen; one guy started buzzing at
my cursor as if in a fight. The audience all stood up and applauded at
the end of the demo.

This was the demo that changed the world. The computer
science community moved from skepticism to standing ovation in
an hour and a half, and the ideas of direct manipulation of a
graphical user interface became lodged in the communal
consciousness. This was not punched cards and Teletypes. It was
something entirely different. Doug sat alone at a console in the
middle of the stage, with the twenty-foot screen behind him
showing the view from the video feeds. He was wearing a short-
sleeved white shirt and a thin tie, with a microphone dangling on
his chest, and a headset like an aircraft controller’s. The overhead
camera showed his right hand using a mouse, seen for the first
time by most of the audience, to point and select with; a standard
typewriter keyboard in the center and a five-key command pad
under his left hand. In his calm but mesmerizing voice, he
described and demonstrated an amazing array of functions on the
NLS system. Words were manipulated with full-screen text
editing, including automatic word wrap, corrections and
insertions, formatting, and printing. Documents were planned and
formatted using headings and subheadings. Links were
demonstrated between one document and another, and
collaboration between remote participants was demonstrated in

real time:

One of the basic design principles that we started with was that you
want to be able to talk about any other knowledge object out there.

0l want your links to point in high resolution, for example to a

yiven word in another document, so you want a link addressing string
thal will let you get there. You also should be able to have optional
iiernative views,

| just want to see that one paragraph,” I might say.

Okay! When I get there, I'd like to have certain terms
Myhlighted.”

Okay! I'd also like to know who else in my group has links to it,
il what they say about it.”

| wrote in 1962 that we are all used to the idea that we can
diagram sentences, based on the syntactical rules for a properly
thuctured sentence. Now we might want to see a similar set of rules
o the structure of an argument, so the computer has a graphic
diagram of the argument with nodes connected to other arguments,

pressions and statements, and meaningful links connecting them.

the demo was truly amazing, proving that interactive
Bputing could be used for real-time manipulations of
W ation in ways that very few people had imagined before.
e asumption that high levels of training would always be
Wiptable did not get in the way until ordinary people tried to
B oine users of NLS.

[he demo also positioned Doug and his band at ARC to
e continuing funding for their research until 1975. His team
W (o thirty-five people at one point. In 1969 they were
Plected to ARPAnet as one of the original nodes of the

ilitiry research connected network, which eventually developed
Wl the Internet. NLS grew in sophistication and content as time
Wil on but remained essentially the same in concept. In 1971 a

pioip of the best people at ARC, including Bill English, were

Wipted away from SRI by the opportunities at the new Xerox
PAILC where so many exciting things seemed to be about to
Wippen. This was the start of a slide for Doug Engelbart, during
Which his long-held dreams seemed to have less and less
Wlluence. You can feel the frustration behind his words as he
disiribes the determined pursuit of his ideals and bemoans the
N of the (]L‘\kl()Pi

I've been pursuing for fifty years something that required higher and
higher levels of capability. “How do you achieve capability,” I was

Demo at Joint Computer Conference, 196

asking, “and when you achieve capability levels as high as you can
get, then how do you reduce the learning costs in a reasonable way,
but not try to set what I think of as an artificial level of learnability
ease, and have to keep your capability enhancements within that
level?”

In the business world, I understand, that is awkward to try to do,
because you are competing with other people for sales, and people
will try computer interfaces that will strike customers as easy to use
early on when they purchase them. I don't object to having a
difference, but I feel that the world should recognize that there are
really high levels of capability there to pursue that will be very
important for society to have reached. That’s been my pursuit.

Many years ago it became clear to me that what you need to do is
develop a basic software structure that will have file designs,
capabilities, and properties that the very expert person could use.
Then it is easy enough to support the beginner, or pedestrian user, by
plugging a very simple user interface with simple operations on the
front, but they can both work on the same materials.

Yes, you can point with a GUI, I admit, but our system had an
indefinite number of verbs and nouns that you could employ.

There’s no way that pointing and clicking at menus can compete
with that. You wouldnt want to give someone directions by that
limited means.

It 15 easy to understand the idea of going for the best, of

catering to the expert user, and then providing a path to get there
from a simple user interface designed for the beginner. In
practice, however, this has proved to be the wrong way round, as
it’s not easy to get something right for the beginner when your
design is already controlled by something that is difficult to learn.
Look, for example, at the use of the five-key keypad for typing
text. Like the stenographer’s keyboard used for recording court
proceedings, it enables impressive typing speeds when you have

been trained long enough to become expert.

Quite a few users adopted the chording key set that I built for
myself. You could type any of the characters in the alphabet with one
hand, and give commands with the three-button mouse in the other
hand at the same time as pointing. This gave a much richer
vocabulary and a much more compact way to evoke it than the GUI.

Lhis I how the interactions were designed. On the mouse,
Button was to click, another was called command accept, and
e i was called command delete. It you wanted to delete a

sl you would hit the middle button on the keypad, which was
B etier o It was d because it is the fourth letter in the alphabet,
B Hhis was a binary coding, 1, 2, 4, 8, 16. If it was the letter f, it

i the sixth letter, so youd hit the 2 and the 4 keys at the same

e L hen you pointed at and clicked the beginning of the thing
il wanted deleted, then you pointed at and clicked the end of
e thing you wanted deleted, and if you hadn’t made any
T ou would hit the command accept key on the mouse. It
Wl pomnt/click, point/click, command accept. If you made a
MIREIRE At any point, you would hit the command delete kc)’ to back
I P one step
L hat process was (‘On]p]i(.llt‘d to learn, and it took a I(mg
e 1o most people to memorize the binary-based, five-finger
dpdial \lternatively, they could invoke commands with keypad,
W oven the keyboard, the mouse for pointing, and a conventional
Bevhioard in between for typing text. This would have been a very
ponid solution for people with four hands, but is not as fast as the
shiided Keyboard and three-button mouse, as it takes longer to
e your hands to and from the keyboard.
Doug Engelbart strives consistently toward a goal of the best
possihle performance, and his intuitions and insights have set the
vie lor the dominance of the mouse and the desktop. His
Wllience has been limited by his decision to design for people as
determined and proficient as he is himself, rather than for those
M require an easy-to-use system.

